A BANACH LATTICE WITHOUT THE APPROXIMATION PROPERTY

BY

A. SZANKOWSKI

ABSTRACT

A Banach lattice L without the approximation property is constructed. The construction can be improved so that L is, in addition, uniformly convex. These results yield the existence of a uniformly convex Banach space with symmetric basis and without the uniform approximation property.

A Banach space L is said to have the approximation property (AP) if the identity operator on L can be approximated uniformly on every compact subset of L by bounded finite rank operators, i.e. if for every compact $K \subset L$ and for every $\varepsilon > 0$ there exists $T: L \to L$ with $\operatorname{rk} T = \dim TL < \infty$ and such that $||Tx - x|| < \varepsilon$ for every $x \in K$.

A Banach lattice L is a partially ordered real Banach space for which

(i) $x \le y$ implies $x + z \le y + z$ for every $x, y, z \in L$,

(ii) $\alpha x \ge 0$ whenever $x \ge 0$ and $\alpha \ge 0$,

(iii) the least upper bound $x \lor y$ and the greatest lower bound $x \land y$ exist for every $x, y \in L$,

(iv) $||x|| \le ||y||$ whenever $|x| \le |y|$ (where $|x| = x \lor (-x)$).

1. Construction of a Banach lattice without AP

Let I = [0, 1], let λ be the Lebesgue measure on I. Let J_n denote the set of intervals $\{[k \cdot 2^{-n}, (k+1)2^{-n}]: k = 0, 1, \dots, 2^n - 1\}$. By B_n we denote the (finite) σ -algebra of subsets of I generated by J_n . Let $\varphi_n: I \to I$ be a measure preserving transformation such that

$$\varphi_n([k2^{-n}, (k+1)2^{-n}]) = \begin{cases} [(k+1)2^{-n}, (k+2)2^{-n}] & \text{if } k \text{ is even,} \\ \\ [(k-1)2^{-n}, k2^{-n}] & \text{if } k \text{ is odd.} \end{cases}$$

Received February 12, 1976

A. SZANKOWSKI

At the very end of this chapter we shall construct a sequence Δ_n of (disjoint) partitions of I satisfying the following conditions:

(*) the elements of Δ_n are B_n -measurable subsets of I of equal length, M_n = the number of elements of Δ_n , goes faster to ∞ than any power of n. (**) If $A \in \Delta_n$, $B \in \Delta_m$ then

$$\lambda(\varphi_n(A)\cap B) \leq 4\lambda(A)\cdot\lambda(B).$$

Let f be a measurable function on I. We put

$$||f|| = \sup_{m} \max_{B \in \Delta_{m}} M_{m} \int_{B} |f| d\lambda$$

and define $L = \{f: ||f|| < \infty\}$, equipped with the norm || (we identify functions equal a.e.)

By standard arguments one can prove that L is a Banach space, it is clearly a lattice with the natural order relation; (i)-(iv) are trivially fulfilled. We have also

(1)
$$||f||_{\mathfrak{l}} \leq ||f|| \leq ||f||_{\infty} \quad \text{for all } f.$$

Let $T \in B(L, L)$ (= bounded operators from L into L). We define (here 1_A is the indicator function of A and $(f, g) = \int fg d\lambda$):

$$\beta_n(T) = \sum_{u \in \mathcal{J}_n} (1_u, T1_u).$$

We have the following two standard lemmas.

LEMMA 1. If $T \in B(L, L)$ is compact, then $\lim_{n\to\infty} \beta_n(T) = 0$.

PROOF. First let us notice that, by the invariance of trace, if w_j , $j = 1, \dots, 2^n$ is any system of B_n -measurable functions satisfying $(w_i, w_j) = 2^{-n} \delta_{ij}$, then also

$$\beta_n(T) = \sum_{j=1}^{2^n} (w_j, Tw_j).$$

In particular, if f_1, \dots, f_{2^n} are B_n -measurable functions such that $|f_i| \equiv 1$ and $(f_i, f_i) = \delta_{ij}$, then

$$\beta_n(T) = 2^{-n} \sum_{j=1}^{2^n} (f_j, Tf_j)$$

(take, for example, the first 2^n Walsh functions).

Notice that, by (1), $||f_i|| = 1$ and $||f_i||^* = 1$ where $||f_i||^* = \sup\{(f_i, f): ||f|| = 1\}$. Take an $\varepsilon > 0$. Since T is compact, we can find $x_1, \dots, x_k \in L$ so that for every f_i there exists an i so that $||Tf_i - x_i|| < \varepsilon/2$. Therefore

(2)
$$|\beta_n(T)| \leq k \max_{1 \leq i \leq k} 2^{-n} \sum_{j=1}^{2^n} |(f_j, x_i)| + \varepsilon/2.$$

Since f_i are orthonormal and $x_i \in L_1$, $\lim_{j\to\infty} (f_j, x_i) = 0$ for $i = 1, \dots, k$ and therefore, if *n* is big enough,

$$2^{-n}\sum_{j=1}^{2^n}|(f_j,x_i)|<\varepsilon/2k\quad\text{for }i=1,\cdots,k.$$

Consequently, $|\beta_n(T)| < \varepsilon$ for sufficiently big *n*. This proves Lemma 1.

LEMMA 2. Assume that for every n there exists a finite set F_n so that (here $\beta_{-1} = 0$)

(3)
$$|\beta_n(T) - \beta_{n-1}(T)| \leq \max\{||Tf||: f \in F_n\}, n = 0, 1, 2, \cdots$$

(4)
$$\sum \alpha_n < \infty \quad where \quad \alpha_n = \max \{ \|f\| : f \in F_n \}$$

Then L does not have AP.

PROOF. First let us notice that, by (4), $\beta(T) = \lim_{n \to \infty} \beta_n(T)$ is well defined for all $T \in B(L, L)$.

We see immediately that β is linear and that $\beta(Id_L) = 1$, where Id_L is the identity on L.

Let $\xi_n \to \infty$ be such that we still have $\sum \alpha_n \xi_n < \infty$. Let us take $K = \bigcup_{n=0}^{\infty} (\xi_n \alpha_n)^{-1} F_n \cup \{0\}$. This is clearly a compact set in L, since $\cup (\xi_n \alpha_n)^{-1} F_n$ is just a sequence convergent to 0.

We have, by (4),

$$|\beta(T)| \leq \left(\sum_{n=0}^{\infty} \alpha_n \xi_n\right) \sup\{\|Tf\|: f \in K\}.$$

Assume now that $T \in B(L, L)$ is compact and that $||Tx - x|| < \varepsilon$ for all $x \in K$. By Lemma 1 and by linearity of β we have

$$1 = |\beta(I-T)| \leq \left(\sum_{n=0}^{\infty} \alpha_n \xi_n\right) \cdot \varepsilon$$

and this shows that L does not even have the *compact* AP (i.e. the weaker approximation property, where the words "finite rank" in the definition of AP are replaced by "compact").

In the sequel we shall need the following

LEMMA 3. Let $A = (a_{ij})_{i,j=1}^m$. There exist $\varepsilon_1, \dots, \varepsilon_m = \pm 1$ such that

$$\sum_{i=1}^{m} \left| \sum_{j=1}^{m} \varepsilon_{j} a_{ij} \right| \geq \left| \sum_{i=1}^{m} a_{ii} \right|.$$

(Let us notice that the lemma expresses the following statement: let an operator $A: l_{\infty}^{m} \rightarrow l_{1}^{m}$ be given by A(x) = Ax. Then $||A|| = \max \{ ||Ax||_{1}: x \in \text{ext} (\text{unit ball}) \}$

PROOF. We shall prove a little more than stated: there exist $\varepsilon_1, \dots, \varepsilon_m = \pm 1$ so that $\sum_i \varepsilon_i \sum_j \varepsilon_j a_{ij} \ge \sum a_{ii}$. If we put $b_{ij} = a_{ij} + a_{ji}$ this becomes

$$\sum_{1\leq j$$

The last statement follows easily by induction on m:

$$\sum_{1 \le j < i \le m+1} \varepsilon_i \varepsilon_j b_{ij} = \sum_{1 \le j < i \le m} \varepsilon_i \varepsilon_j b_{ij} + \varepsilon_{m+1} \sum_{j=1}^m \varepsilon_j b_{mj}$$

Having chosen ε_i so that the first term is ≥ 0 , we take $\varepsilon_{m+1} = \operatorname{sgn} \sum_{j=1}^{m} \varepsilon_j b_{mj}$.

LEMMA 4. For every $T \in B(L, L)$ there exist $(\varepsilon_u)_{u \in J_n}$, $\varepsilon_u = \pm 1$ so that

(5)
$$|\beta_n(T) - \beta_{n-1}(T)| \leq \sum_{A \in \Delta_n} \int_A \left| T \sum_{v \in J_m v \subset A} \varepsilon_v \mathbf{1}_{\varphi_n(v)} \right|$$

PROOF. Obviously,

$$\beta_n(T) - \beta_{n-1}(T) = \sum_{u \in J_n} (1_u, T 1_{\varphi_n(u)})$$
$$= \sum_{A \in \Delta_n} \sum_{u \in J_n u \subset A} (1_u, T 1_{\varphi_n(u)})$$

For a fixed $A \in \Delta_n$ we apply Lemma 3 with

$$m = \operatorname{card} A = 2^{n} M_{n}^{-1}, \qquad a_{uv} = (1_{u}, T 1_{\varphi_{m}(v)})$$

and we find ε_u , $u \in A$, $u \in J_n$ so that

$$\sum_{u \in A, u \in J_n} \left| \sum_{v \in A, v \in J_n} \varepsilon_v \int_u T \mathbf{1}_{\varphi_n(v)} \right| \ge \left| \sum_{u \in A, u \in J_n} (\mathbf{1}_u, T \mathbf{1}_{\varphi_n(u)}) \right|.$$

The left-hand side is equal to

$$\begin{split} \sum_{u \in A, u \in J_n} \left| \int_{u} T \sum_{v \in A, v \in J_n} \varepsilon_v \mathbf{1}_{\varphi_n(v)} \right| &\leq \sum_{u \in A, u \in J_n} \int_{u} \left| T \sum_{v \in A, v \in J_n} \varepsilon_v \mathbf{1}_{\varphi_n(v)} \right| \\ &= \int_{A} \left| T \sum_{v \in A, v \in J_n} \varepsilon_v \mathbf{1}_{\varphi_n(v)} \right|. \end{split}$$

This gives the desired inequality.

of l_{∞}^{m} $\geq | \operatorname{tr} A |$.

Vol. 24, 1976

Now we can easily show that the assumptions of Lemma 2 are fulfilled with

(6)
$$F_n = \bigcup_{A \in \Delta_n} \{f: f \text{ is } B_n \text{-measurable and } |f| = 1_{\varphi_n(A)} \}$$

Indeed, by Lemma 4,

(7)
$$|\beta_n(T) - \beta_{n-1}(T)| \leq M_n \max_{f \in F_n} \max_{A \in \Delta_n} \int_A |Tf|$$

and this gives (3).

On the other hand, if $|f| = 1_{\varphi_m(A)}$ for an $A \in \Delta_m$, then for any m, any $B \in \Delta_m$, we have, by (**),

$$\int_{B} |f| = \lambda(\varphi_n(A) \cap B) \leq 4\lambda(A)\lambda(B)$$

and therefore

$$\|f\| \leq 4\lambda(A) = 4M_n^{-1}.$$

Clearly, $\sum M_n^{-1} < \infty$.

It remains to define partitions Δ_n satisfying (*) and (**). We shall need the following combinatorial

LEMMA 5. Let card $P = 2^{2M}$, let $q = 2^{M}$. There exist partitions $\Omega_1, \dots, \Omega_q$ of P so that

(*') all Ω_i consist of q sets of q elements each,

(**') if $D \in \Omega_i$, $E \in \Omega_j$, $i \neq j$, then $D \cap E$ consists of one element.

PROOF. We can treat P as an abelian field; let S be a subfield of P of order q (i.e. having q elements). Let Λ denote the set of all straight lines passing through 0, of the form xS. Evidently, Λ has $(q^2 - 1)/(q - 1) \ge q$ elements. For each $l \in \Lambda$ let Ω_1 denote the partition of P into S-lines parallel to l. Clearly, (*') and (**') are satisfied.

CONSTRUCTION OF Δ_n 's. Now it will be more convenient to identify I with the infinite product $\nabla = \{-1, 1\}^{\aleph_0}$, equipped with the natural product measure. By this identification, B_n = the subsets of ∇ that depend on the first n coordinates only and we can put $\varphi_n(\varepsilon_1, \varepsilon_2, \cdots) = (\varepsilon_1, \varepsilon_2, \cdots, -\varepsilon_n, \cdots)$.

Let $P_n = \{-1, 1\}^{2^n}$, we represent ∇ as $\nabla = \prod_{n=1}^{\infty} P_n$. By π_n we denote the natural projection from ∇ onto P_n . Let $q_n = \sum_{k=1}^{n} 2^k$ $(=2^{n+1}-1)$; let $\{\Omega_m\}_{m=2(q_n+1)}^{2q_{n+1}+1}$ denote a system of partitions of P_{n-1} , satisfying (*') and (**') of Lemma 5 (this is possible, since here $M = 2^{n-1}$, $q = 2^{2^{n-2}}$ and we need 2^{n+2} partitions), from some n on.

For $q_n < m \leq q_{n+1}$ we set

$$\Delta_m = \{\{t \in \nabla : \pi_{n-1}(t) \in D \text{ and } t_m = 1\} : D \in \Omega_{m+1-2^n}\}$$
$$\cup \{\{t \in \nabla : \pi_{n-1}(t) \in D \text{ and } t_m = -1\} : D \in \Omega_{m+1}\}.$$

Remark that $M_m = 2^{-2^{n-2}}$ whence $m = O(2^n)$ and therefore (*) is satisfied.

Let us now check (**). So let $q_i < m \leq q_{i+1}$, $q_j < n \leq q_{j+1}$, let $A = \{t \in \nabla : \pi_{j+1}(t) \in D \text{ and } t_n = \varepsilon\}$, $B = \{t \in \nabla : \pi_{i-1}(t) \in E \text{ and } t_m = \eta\}$ with $D \in \Omega_{n+1-(\varepsilon+1)2^{i-1}}$, $E \in \Omega_{m+1-(\eta+1)2^{i-1}}$. Remark that $\varphi_n(A) \subset \pi_{j-1}^{-1}(D)$, $B \subset \pi_{j-1}^{-1}(E)$ and

$$\lambda(A) = \frac{1}{2}\lambda(\pi_{j-1}^{-1}(D)) = 2^{-2^{j-2}}$$
$$\lambda(B) = \frac{1}{2}\lambda(\pi_{j-1}^{-1}(E)) = 2^{-2^{j-2}}.$$

Let us consider two cases:

1. $i \neq j$. Then $\pi_{i-1}^{-1}(D)$ and $\pi_{i-1}^{-1}(E)$ depend on disjoint sets of coordinates and therefore

$$\lambda(\varphi_n(A) \cap B) \leq \lambda(\pi_{j-1}^{-1}(D) \cap \pi_{i-1}^{-1}(E)) = \lambda(\pi_{j-1}^{-1}(D)) \cdot \lambda(\pi_{i-1}^{-1}(E))$$
$$= 4\lambda(A) \cdot \lambda(B).$$

2. i = j. If m = n and $\varepsilon = \eta$, then $\varphi_n(A)$ and B differ on the nth (= m th) coordinate and are disjoint.

Otherwise D and E belong to different partitions of P_{i-1} and therefore $D \cap E$ consists of one point. Consequently,

$$\lambda(\varphi_n(A) \cap B) \leq \lambda(\pi_{j-1}^{-1}(D \cap E)) = 2^{-2^{j-1}} = (2^{-2^{j-2}})^2 = 4\lambda(A)\lambda(B).$$

2. Applications

By a modification of the construction in the first part of this paper, we can get the following embedding theorem.

PROPOSITION 1. Let $1 \le q . There exists a Banach lattice L which can be isometrically imbedded in <math>(\Sigma \bigoplus L_q)_{l_p}$ and which fails the approximation property.

As an immediate corollary (by taking $1 < q < p < \infty$) we get

PROPOSITION 2. There exists a uniformly convex Banach lattice without AP.

Probably the most interesting applications of our result are connected with the recently introduced notion of *uniform approximation property* (UAP).

DEFINITION ([3]). A Banach space X is said to have λ -UAP if there exists a function N(k) such that for every k-dimensional subspace E of X there exists an operator $T \in B(X, X)$ such that $T_{|E} = Id_{E}$, $||T|| \leq \lambda$ and rk $T \leq N(k)$. X has UAP if there exists $\lambda < \infty$ such that X has λ -UAP.

Pełczyński and Rosenthal proved in [3] that L_p -spaces have UAP; this was extended to the case of reflexive Orlicz spaces by Lindenstrauss and Tzafriri [2].

One could therefore ask what "decent" Banach spaces have UAP. We obtain here a rather strong negative result.

PROPOSITION 3. There exists a uniformly convex Banach space with symmetric basis, which does not have UAP.

PROOF OF PROPOSITION 1. By an inspection of the first part of this paper we can immediately see that we obtain a lattice without AP whenever our norm $\| \|$ satisfies the following conditions (for some constants γ , γ_n):

(1')
$$||f|| = |||f|||, ||f||_1 \le ||f|| \le \gamma ||f||_{\infty}$$
 for all f ,

(4')
$$\sum \gamma_n \max_{A \in \Delta_n} \gamma \| \mathbf{1}_{\varphi_n(A)} \| < \infty,$$

(5')
$$M_n \max_{A \in \Delta_n} \int |g| \leq \gamma_n ||g||$$
 for all g , all n .

Indeed, by setting $F'_n = \gamma_n F_n$ (the F_n from (6)) we get, by (7) and (5'),

(3')
$$|\beta_n(T) - \beta_{n-1}(T)| \le \gamma_n \max\{||Tf||: f \in F_n\} = \max\{||Tf||: f \in F'_n\}.$$

On the other hand, (4') says exactly

$$\sum \max \{ \|f\| \colon f \in F'_n \} < \infty.$$

We apply Lemma 2 (Lemma 1 is again valid, by (1')).

We set now tentatively

$$||f|| = \left(\sum_{m=1}^{\infty} \sum_{B \in \Delta_m} M_m^{ap} \left(\int_B |f|^q\right)^{p/q}\right)^{1/p}$$

and $\gamma_n = M_n^{\beta}$. ad(4'). We have, for $A \in \Delta_n$, by (**),

$$\|1_{\varphi_n(A)}\| \leq \left(\sum_{m=1}^{\infty} M_m \cdot M_m^{\alpha p} 4^{p/q} M_m^{-p/q} M_n^{-p/q}\right)^{1/p}$$
$$= 4^{1/q} M_n^{-1/q} \left(\sum_{m=1}^{\infty} M_m^{1+\alpha p-p/q}\right)^{1/p}$$

and (4') is satisfied provided

$$\sum M_m^{1+\alpha p-p/q} < \infty$$
 and $\sum M_n^{\beta-1/q} < \infty$.

Since M_n goes very fast to ∞ , it is enough if

$$(8) 1+\alpha p-\frac{p}{q}<0,$$

$$\beta - \frac{1}{q} < 0,$$

ad (5'): $||g|| \ge M_n^{\alpha} (f_A |g|^q)^{1/q}$ for every *n* and every $A \in \Delta_n$.

By Hölders inequality we get (for every *n* and every $A \in \Delta_n$)

$$||g|| \ge M_n^{\alpha} \cdot M_n^{1-1/q} \int_A |g| = M_n^{1+\alpha-1/q} \int_A |g|.$$

Again, (5') is satisfied provided

(10)
$$\alpha + \beta - \frac{1}{q} \ge 0.$$

It is easy to see that the system (8), (9), (10) is consistent if q < p (it is satisfied, e.g., with $\alpha = \frac{1}{2}(1/q - 1/p)$, $\beta = \frac{1}{2}(1/q + 1/p)$).

It remains to prove the inequality in (1'). The left hand side inequality is satisfied provided $M_1 = 1$, which we can always assume. The right hand side inequality is satisfied with $\gamma = \sum M_m^{1+\alpha p-p/q} < \infty$.

This completes the proof of Proposition 1 (and of Proposition 2).

Let L be the Banach lattice from Proposition 1. Let $L^n = \{f \in L : f \text{ is } B_n\text{-measurable}\}$. We set $X = (\Sigma \bigoplus L^n)_h$; by J_n we denote the natural embedding of L^n into X. Clearly X has an unconditional basis, namely $J_n(1_{\lfloor k2^{-n},(k+1)2^{-n}})$, $n = 0, 1, \dots; k = 0, 1, \dots, 2^n - 1$.

LEMMA 6.[†] X does not have UAP provided $q \ge 2$. X is uniformly convex provided $1 < q < p < \infty$.

PROOF. The second statement is obvious. To prove the first one we shall modify the proof of Lemma 1. Let $m \ge n$, let $\lambda < \infty$ and let $T \in B(X, X)$ with $T_{|J_mL^n} = Id_{J_mL^n}$ and $||f|| \le \lambda$. We want to prove that if n is big enough and m grows to ∞ , then rk T must go to ∞ too.

[†] As was pointed out to the author by N. J. Nielsen and by L. Tzafriri, Lemma 6 follows trivially from the following general compactness argument:

If $X = \overline{\bigcup X_n}$ and X does not have UAP, then also $(\Sigma \bigoplus X_n)_b$ does not have UAP.

Denote by π_m the natural projection of X onto L^m . Let $T' = J_m^{-1}\pi_m T J_m$: $L^m \to L^m$. Clearly rk $T' \leq \text{rk } T$ and $||T'|| \leq ||T|| \leq \lambda$. We have also $T'_{L^n} = Id_{L^n}$ and therefore $\beta_n(T') = 1$. Since, by (3'),

$$|\beta_m(T') - \beta_n(T')| \leq ||T|| \sum_{j>n} \gamma_j \max\{||\mathbf{1}_{\varphi(A)}|| \colon A \in \Delta_j\},\$$

there exists an *n* such that for all $m \ge n$

$$\beta_m(T') \ge \frac{1}{2}$$

Let f_j be as in the proof of Lemma 1. Let $k = \operatorname{rk} T'$. There exists a number k which depends only on K, λ and γ such that there exists a $\frac{1}{4}$ -net x_1, \dots, x_K in $T'(\{f \in L : ||f|| < \gamma\})$. Consequently, for every j there is an $i = 1, \dots, K$ such that $||Tf_j - x_i|| < \frac{1}{4}$. Therefore

$$|\beta_m(T')| \leq K \max_{1 \leq i \leq K} 2^{-m} \sum_{j=1}^{2^m} |(f_j, x_i)| + \frac{1}{4}.$$

But since $q \ge 2$, $||x_i|| \ge ||x_i||_2$ and therefore

$$\lambda \ge \|x_i\| \ge \|x_i\|_2 = \left(\sum_{j=1}^{2^m} |(f_j, x_i)|^2\right)^{\frac{1}{2}} \ge 2^{-m/2} \sum_{j=1}^{m} |(f_j, x_i)|$$

and thus $|\beta_m(T')| \leq \frac{3}{8}$ if m is big enough. This contradicts (11).

In this way we have proved a weaker version of Proposition 3 — "symmetric" should read "unconditional". To improve this, we use a result of W. J. Davis [1]: Every uniformly convex space with unconditional basis can be embedded as a complemented subspace in a uniformly convex space with symmetric basis.

Proposition 3 follows now immediately, since UAP is hereditary with respect to complemented subspaces.

The author is grateful to G. A. Elliott and T. Figiel for helpful discussions.

References

1. W. J. Davis, Embedding spaces with unconditional bases, Israel J. Math. 20 (1975), 189-191.

2. J. Lindenstrauss and L. Tzafriri, The uniform approximation property in Orlicz spaces, Israel J. Math. 23 (1976), 142–155.

3. A. Pełczyński and H. Rosenthal, Localization techniques in L_p spaces, Studia Math. 52 (1975), 263–289.

Department of Mathematics University of Copenhagen Copenhagen, Denmark