A BANACH LATTICE WITHOUT THE APPROXIMATION PROPERTY

BY

A. SZANKOWSKI

ABSTRACT

A Banach lattice L without the approximation property is constructed. The construction can be improved so that L is, in addition, uniformly convex. These results yield the existence of a uniformly convex Banach space with symmetric basis and without the uniform approximation property.

A Banach space L is said to have the *approximation property* (AP) if the identity operator on L can be approximated uniformly on every compact subset of L by bounded finite rank operators, i.e. if for every compact $K \subset L$ and for every $\varepsilon > 0$ there exists $T: L \to L$ with $r kT = \dim TL < \infty$ and such that $||Tx - x|| < \varepsilon$ for every $x \in K$.

A Banach lattice L is a partially ordered real Banach space for which

(i) $x \leq y$ implies $x + z \leq y + z$ for every $x, y, z \in L$,

(ii) $\alpha x \ge 0$ whenever $x \ge 0$ and $\alpha \ge 0$,

(iii) the least upper bound $x \vee y$ and the greatest lower bound $x \wedge y$ exist for every $x, y \in L$,

(iv) $||x|| \le ||y||$ whenever $|x| \le |y|$ (where $|x| = x\sqrt{-x}$).

1. Construction of a Banach lattice without AP

Let $I = [0, 1]$, let λ be the Lebesgue measure on I. Let J_n denote the set of intervals $\{[k \cdot 2^{-n}, (k+1)2^{-n}] : k = 0, 1, \dots, 2^{n} - 1\}$. By B_n we denote the (finite) σ -algebra of subsets of I generated by J_{π} . Let $\varphi_n : I \to I$ be a measure preserving transformation such that

$$
\varphi_n([k2^{-n}, (k+1)2^{-n}]) = \begin{cases} [(k+1)2^{-n}, (k+2)2^{-n}] & \text{if } k \text{ is even,} \\ [(k-1)2^{-n}, k2^{-n}] & \text{if } k \text{ is odd.} \end{cases}
$$

Received February 12, 1976

330 **A. SZANKOWSKI** Israel J. Math.

At the very end of this chapter we shall construct a sequence Δ_n of (disjoint) partitions of I satisfying the following conditions:

(*) the elements of Δ_n are B_n -measurable subsets of I of equal length, $M_n =$ the number of elements of Δ_n , goes faster to ∞ than any power of n. (**) If $A \in \Delta_n$, $B \in \Delta_m$, then

$$
\lambda(\varphi_n(A)\cap B)\leq 4\lambda(A)\cdot \lambda(B).
$$

Let f be a measurable function on I . We put

$$
||f|| = \sup_{m} \max_{B \in \Delta_m} M_m \int_B |f| d\lambda
$$

and define $L = \{f: ||f|| < \infty\}$, equipped with the norm $|| \cdot ||$ (we identify functions equal a.e.)

By standard arguments one can prove that L is a Banach space, it is clearly a lattice with the natural order relation; (i) - (iv) are trivially fulfilled. We have also

(1)
$$
||f||_1 \le ||f|| \le ||f||_{\infty}
$$
 for all f .

Let $T \in B(L, L)$ (= bounded operators from L into L). We define (here 1_A is the indicator function of A and $(f, g) = \int f g d\lambda$):

$$
\beta_n(T)=\sum_{u\in J_n}(1_u,T1_u).
$$

We have the following two standard lemmas.

LEMMA 1. If $T \in B(L, L)$ is compact, then $\lim_{n \to \infty} \beta_n(T) = 0$.

PROOF. First let us notice that, by the invariance of trace, if w_j , $j = 1, \dots, 2^n$ is any system of B_n -measurable functions satisfying $(w_i, w_j) = 2^{-n} \delta_{ij}$, then also

$$
\beta_n(T)=\sum_{j=1}^{2^n} (w_j, Tw_j).
$$

In particular, if f_1, \dots, f_{2^n} are B_n -measurable functions such that $|f_i| \equiv 1$ and $(f_i, f_i) = \delta_{ij}$, then

$$
\beta_n(T) = 2^{-n} \sum_{j=1}^{2^n} (f_j, Tf_j)
$$

(take, for example, the first 2" Walsh functions).

Notice that, by (1), $||f_i|| = 1$ and $||f_i||^* = 1$ where $||f_i||^* = \sup \{(f_i, f): ||f|| = 1\}.$ Take an $\varepsilon > 0$. Since T is compact, we can find $x_1, \dots, x_k \in L$ so that for every f_i there exists an i so that $||Tf_i - x_i|| < \varepsilon/2$. Therefore

(2)
$$
|\beta_n(T)| \leq k \max_{1 \leq i \leq k} 2^{-n} \sum_{j=1}^{2^n} |(f_j, x_i)| + \varepsilon/2.
$$

Since f_i are orthonormal and $x_i \in L_1$, $\lim_{j \to \infty} (f_j, x_i) = 0$ for $i = 1, \dots, k$ and therefore, if n is big enough,

$$
2^{-n}\sum_{j=1}^{2^n} |(f_j,x_i)| < \varepsilon/2k \quad \text{for } i=1,\cdots,k.
$$

Consequently, $|\beta_n(T)| < \varepsilon$ for sufficiently big n. This proves Lemma 1.

LEMMA 2. Assume that for every n there exists a finite set F_n so that (here $\beta_{-1} = 0$

$$
(3) \quad |\beta_n(T) - \beta_{n-1}(T)| \leq \max\{||Tf|| : f \in F_n\}, \quad n = 0, 1, 2, \cdots
$$

(4)
$$
\sum \alpha_n < \infty \quad \text{where} \quad \alpha_n = \max \{ ||f|| : f \in F_n \}
$$

Then L does not have AP.

PROOF. First let us notice that, by (4), $\beta(T) = \lim_{n \to \infty} \beta_n(T)$ is well defined for all $T \in B(L, L)$.

We see immediately that β is linear and that $\beta(Id_L)=1$, where *Id_L* is the identity on L.

Let $\xi_n \to \infty$ be such that we still have $\Sigma \alpha_n \xi_n < \infty$. Let us take $K =$ $\bigcup_{n=0}^{\infty} (\xi_n \alpha_n)^{-1} F_n \cup \{0\}.$ This is clearly a compact set in L, since $\bigcup (\xi_n \alpha_n)^{-1} F_n$ is just a sequence convergent to 0.

We have, by (4),

$$
|\beta(T)| \leq \left(\sum_{n=0}^{\infty} \alpha_n \xi_n\right) \sup \{\|Tf\|: f \in K\}.
$$

Assume now that $T \in B(L, L)$ is compact and that $||Tx - x|| < \varepsilon$ for all $x \in K$. By Lemma 1 and by linearity of β we have

$$
1 = |\beta(I - T)| \leqq \left(\sum_{n=0}^{\infty} \alpha_n \xi_n\right) \cdot \varepsilon
$$

and this shows that L does not even have the *compact* AP (i.e. the weaker approximation property, where the words "finite rank" in the definition of AP are replaced by "compact").

In the sequel we shall need the following

LEMMA 3. Let $A = (a_{ij})_{i,j=1}^m$. There exist $\varepsilon_1, \dots, \varepsilon_m = \pm 1$ such that

$$
\sum_{i=1}^m \left| \sum_{j=1}^m \varepsilon_j a_{ij} \right| \geq \left| \sum_{i=1}^m a_{ii} \right|.
$$

(Let us notice that the iemma expresses the following statement: let an operator $A: l^m \to l^m \text{ be given by } A(x) = Ax.$ Then $||A|| = \max \{||Ax||_1 : x \in \text{ext (unit ball)}\}$ of $\{l^m_{\infty}\}\geq |trA|.$

PROOF. We shall prove a little more than stated: there exist $\varepsilon_1, \dots, \varepsilon_m = \pm 1$ so that $\Sigma_i \varepsilon_i \Sigma_j \varepsilon_j a_{ij} \ge \Sigma a_{ii}$. If we put $b_{ij} = a_{ij} + a_{ji}$ this becomes

$$
\sum_{1\leq j
$$

The last statement follows easily by induction on **m:**

$$
\sum_{1 \leq j < i \leq m+1} \varepsilon_i \varepsilon_j b_{ij} = \sum_{1 \leq j < i \leq m} \varepsilon_i \varepsilon_j b_{ij} + \varepsilon_{m+1} \sum_{j=1}^m \varepsilon_j b_{mj}.
$$

Having chosen ε_i so that the first term is ≥ 0 , we take $\varepsilon_{m+1} = \text{sgn} \sum_{j=1}^m \varepsilon_j b_{mj}$.

LEMMA 4. *For every* $T \in B(L, L)$ there exist $(\varepsilon_u)_{u \in J_n}$, $\varepsilon_u = \pm 1$ *so that*

$$
(5) \hspace{1cm} |\beta_n(T) - \beta_{n-1}(T)| \leq \sum_{A \in \Delta_n} \int_A \left| T \sum_{v \in J_{n, v} \subset A} \varepsilon_v 1_{\varphi_n(v)} \right|
$$

PROOF. Obviously,

$$
\beta_n(T) - \beta_{n-1}(T) = \sum_{u \in J_n} (1_u, T1_{\varphi_n(u)})
$$

=
$$
\sum_{A \in \Delta_n} \sum_{u \in J_n u \subset A} (1_u, T1_{\varphi_n(u)}).
$$

For a fixed $A \in \Delta_n$ we apply Lemma 3 with

$$
m = \operatorname{card} A = 2^n M_n^{-1}, \qquad a_{uv} = (1_u, T1_{\varphi_n(v)})
$$

and we find ε_{u} , $u \in A$, $u \in J_n$ so that

$$
\sum_{u\in A, u\in J_n}\left|\sum_{v\in A, v\in J_n}\varepsilon_v\int_u T1_{\varphi_n(v)}\right|\geq \left|\sum_{u\in A, u\in J_n}(1_u, T1_{\varphi_n(u)})\right|.
$$

The left-hand side is equal to

$$
\sum_{u \subset A, u \in J_n} \left| \int_u T \sum_{v \subset A, v \in J_n} \varepsilon_v 1_{\varphi_n(v)} \right| \leqq \sum_{u \subset A, u \in J_n} \int_u T \sum_{v \subset A, v \in J_n} \varepsilon_v 1_{\varphi_n(v)} \left| \int_u T \sum_{v \subset A, v \in J_n} \varepsilon_v 1_{\varphi_n(v)} \right|.
$$

This gives the desired inequality.

Now we can easily show that the assumptions of Lemma 2 are fulfilled with

(6)
$$
F_n = \bigcup_{A \in \Delta_n} \{f : f \text{ is } B_n\text{-measurable and } |f| = 1_{\varphi_n(A)}\}.
$$

Indeed, by Lemma 4,

(7)
$$
|\beta_n(T) - \beta_{n-1}(T)| \leq M_n \max_{f \in F_n} \max_{A \in \Delta_n} \int_A |Tf|
$$

and this gives (3).

On the other hand, if $|f| = 1_{\varphi_n(A)}$ for an $A \in \Delta_n$, then for any m , any $B \in \Delta_m$, we have, by $(**)$,

$$
\int_B |f| = \lambda(\varphi_n(A) \cap B) \leq 4\lambda(A)\lambda(B)
$$

and therefore

$$
||f|| \leq 4\lambda(A) = 4M_n^{-1}.
$$

Clearly, $\Sigma M_n^{-1} < \infty$.

It remains to define partitions Δ_n satisfying (*) and (**). We shall need the following combinatorial

LEMMA 5. Let card $P = 2^{2M}$, let $q = 2^M$. There exist partitions $\Omega_1, \dots, \Omega_q$ of P *so that*

 $(*)$ all Ω_i consist of q sets of q elements each,

(**') if $D \in \Omega_i$, $E \in \Omega_i$, $i \neq j$, then $D \cap E$ consists of one element.

PROOF. We can treat P as an abelian field; let S be a subfield of P of order q (i.e. having q elements). Let Λ denote the set of all straight lines passing through 0, of the form *xS*. Evidently, Λ has $(q^2-1)/(q-1) \geq q$ elements. For each $l \in \Lambda$ let Ω_1 denote the partition of P into S-lines parallel to *l*. Clearly, (*') and (**') are satisfied.

CONSTRUCTION OF Δ_n 's. Now it will be more convenient to identify I with the infinite product $\nabla = \{-1, 1\}^{\mathbf{a}_0}$, equipped with the natural product measure. By this identification, B_n = the subsets of ∇ that depend on the first *n* coordinates only and we can put $\varphi_n(\varepsilon_1,\varepsilon_2,\cdots) = (\varepsilon_1,\varepsilon_2,\cdots,-\varepsilon_n,\cdots).$

Let $P_n = \{-1, 1\}^{2^n}$, we represent ∇ as $\nabla = \prod_{n=1}^{\infty} P_n$. By π_n we denote the natural projection from ∇ onto P_n. Let $q_n = \sum_{k=1}^n 2^k$ (= $2^{n+1} - 1$); let $\{\Omega_m\}_{m=2(q_n+1)}^{2q_{n+1}+1}$ denote a system of partitions of P_{n-1} , satisfying (*') and (**') of Lemma 5 (this is possible, since here $M = 2^{n-1}$, $q = 2^{2^{n-2}}$ and we need 2^{n+2} partitions), from some n on.

For $q_n < m \leq q_{n+1}$ we set

$$
\Delta_m = \{ \{ t \in \nabla: \pi_{n-1}(t) \in D \text{ and } t_m = 1 \} : D \in \Omega_{m+1-2^n} \}
$$

$$
\cup \{ \{ t \in \nabla: \pi_{n-1}(t) \in D \text{ and } t_m = -1 \} : D \in \Omega_{m+1} \}.
$$

Remark that $M_m = 2^{-2^{n-2}}$ whence $m = O(2^n)$ and therefore (*) is satisfied.

Let us now check (**). So let $q_i < m \leq q_{i+1}$, $q_i < n \leq q_{i+1}$, let $A =$ ${t \in \nabla: \pi_{i+1}(t) \in D \text{ and } t_n = \varepsilon}, \quad B = {t \in \nabla: \pi_{i-1}(t) \in E \text{ and } t_m = \eta} \text{ with}$ $D \in \Omega_{n+1-(\varepsilon+1)2^{j-1}}$, $E \in \Omega_{m+1-(n+1)2^{j-1}}$. Remark that $\varphi_n(A) \subset \pi_{i-1}^{-1}(D)$, $B \subset \pi_{i-1}^{-1}(E)$ and

$$
\lambda(A) = \frac{1}{2}\lambda(\pi_{j-1}^{-1}(D)) = 2^{-2^{j-2}}
$$

$$
\lambda(B) = \frac{1}{2}\lambda(\pi_{j-1}^{-1}(E)) = 2^{-2^{j-2}}.
$$

Let us consider two cases:

1. $i \neq j$. Then $\pi_{j-1}^{-1}(D)$ and $\pi_{i-1}^{-1}(E)$ depend on disjoint sets of coordinates and therefore

$$
\lambda(\varphi_n(A)\cap B)\leq \lambda(\pi_{i-1}^{-1}(D)\cap \pi_{i-1}^{-1}(E))=\lambda(\pi_{i-1}^{-1}(D))\cdot \lambda(\pi_{i-1}^{-1}(E))
$$

= 4\lambda(A)\cdot \lambda(B).

2. $i = j$. If $m = n$ and $\epsilon = n$, then $\varphi_n(A)$ and B differ on the nth (= mth) coordinate and are disjoint.

Otherwise D and E belong to different partitions of P_{i-1} and therefore $D \cap E$ consists of one point. Consequently,

$$
\lambda(\varphi_n(A) \cap B) \leq \lambda(\pi_{i-1}^{-1}(D \cap E)) = 2^{-2^{i-1}} = (2^{-2^{i-2}})^2 = 4\lambda(A)\lambda(B).
$$

2. Applications

By a modification of the construction in the first part of this paper, we can get the following embedding theorem.

PROPOSITION 1. Let $1 \leq q < p \leq \infty$. There exists a Banach lattice L which can *be isometrically imbedded in* $(\Sigma \bigoplus L_q)_t$ *and which fails the approximation property.*

As an immediate corollary (by taking $1 < q < p < \infty$) we get

PROPOSITION 2. *There exists a uniformly convex Banach lattice without AP*.

Probably the most interesting applications of our result are connected with the recently introduced notion of *uniform approximation property (UAP).*

DEFINITION ([3]). A Banach space X is said to have λ -UAP if there exists a function $N(k)$ such that for every k-dimensional subspace E of X there exists an operator $T \in B(X, X)$ such that $T_{E} = Id_{E} ||T|| \leq \lambda$ and rk $T \leq N(k)$. *X* has *UAP* if there exists $\lambda < \infty$ such that X has λ -UAP.

Pe ℓ czyński and Rosenthal proved in [3] that L_p -spaces have UAP; this was extended to the case of reflexive Orlicz spaces by Lindenstrauss and Tzafriri [2].

One could therefore ask what "decent" Banach spaces have UAP. We obtain here a rather strong negative result.

PROPOSITION 3. *There exists a uniformly convex Banach space with symmetric basis, which does not have UAP.*

PROOF OF PROPOSITION 1. By an inspection of the first part of this paper we can immediately see that we obtain a lattice without AP whenever our norm $\| \ \|$ satisfies the following conditions (for some constants γ , γ _n):

(1')
$$
||f|| = |||f|||
$$
, $||f||_1 \le ||f|| \le \gamma ||f||_{\infty}$ for all f ,

(4')
$$
\sum \gamma_n \max_{A \in \Delta_n} \gamma \|1_{\varphi_n(A)}\| < \infty,
$$

(5')
$$
M_n \max_{A \in \Delta_n} \int |g| \leq \gamma_n \|g\| \text{ for all } g, \text{ all } n.
$$

Indeed, by setting $F'_n = \gamma_n F_n$ (the F_n from (6)) we get, by (7) and (5'),

$$
(3') \qquad |\beta_n(T) - \beta_{n-1}(T)| \leq \gamma_n \max{\{\|Tf\| : f \in F_n\}} = \max{\{\|Tf\| : f \in F_n'\}}.
$$

On the other hand, (4') says exactly

$$
\sum \max \{\|f\|: f \in F_n'\} < \infty.
$$

We apply Lemma 2 (Lemma 1 is again valid, by $(1')$).

We set now tentatively

$$
||f|| = \left(\sum_{m=1}^{\infty} \sum_{B \in \Delta_m} M_m^{ap} \left(\int_B |f|^q\right)^{p/q}\right)^{1/p}
$$

and $\gamma_n = M_n^{\beta}$. ad(4'). We have, for $A \in \Delta_n$, by (**),

$$
||1_{\varphi_n(A)}|| \leqq \left(\sum_{m=1}^{\infty} M_m \cdot M_m^{\alpha p} 4^{p/q} M_m^{-p/q} M_n^{-p/q}\right)^{1/p}
$$

= $4^{1/q} M_n^{-1/q} \left(\sum_{m=1}^{\infty} M_m^{1+\alpha p-p/q}\right)^{1/p}$

and (4') is satisfied provided

$$
\sum M_m^{1+\alpha p-p/q} < \infty \quad \text{and} \quad \sum M_n^{\beta-1/q} < \infty.
$$

Since M_n goes very fast to ∞ , it is enough if

$$
(8) \t1+\alpha p-\frac{p}{q}<0,
$$

$$
\beta-\frac{1}{q}<0,
$$

ad (5'): $||g|| \geq M_n^{\alpha} (f_A |g|^q)^{1/q}$ for every n and every $A \in \Delta_n$.

By Hölders inequality we get (for every *n* and every $A \in \Delta_n$)

$$
||g|| \ge M_n^{\alpha} \cdot M_n^{1-1/q} \int_A |g| = M_n^{1+\alpha-1/q} \int_A |g|.
$$

Again, (5') is satisfied provided

(10)
$$
\alpha + \beta - \frac{1}{q} \geq 0.
$$

It is easy to see that the system (8), (9), (10) is consistent if $q < p$ (it is satisfied, e.g., with $\alpha = \frac{1}{2}(1/q - 1/p)$, $\beta = \frac{1}{2}(1/q + 1/p)$).

It remains to prove the inequality in (1'). The left hand side inequality is satisfied provided $M_1 = 1$, which we can always assume. The right hand side inequality is satisfied with $\gamma = \sum M_m^{1+\alpha p-p/q} < \infty$.

This completes the proof of Proposition 1 (and of Proposition 2).

Let L be the Banach lattice from Proposition 1. Let $L^n = \{f \in L : f$ is B_n -measurable}. We set $X = (\Sigma \oplus L^n)_b$; by J_n we denote the natural embedding of Lⁿ into X. Clearly X has an unconditional basis, namely $J_n(1_{[k2^{-n}, (k+1)2^{-n}]}),$ $n = 0, 1, \dots; k = 0, 1, \dots, 2ⁿ - 1.$

LEMMA $6⁺$ X does not have UAP provided $q \ge 2$. X is uniformly convex *provided* $1 < q < p < \infty$.

PROOF. The second statement is obvious. To prove the first one we shall modify the proof of Lemma 1. Let $m \ge n$, let $\lambda < \infty$ and let $T \in B(X, X)$ with $T_{ij} = Id_{j}$ and $||f|| \leq \lambda$. We want to prove that if n is big enough and m grows to ∞ , then rk T must go to ∞ too.

 † As was pointed out to the author by N. J. Nielsen and by L. Tzafriri, Lemma 6 follows trivially from the following general compactness argument:

If $X = \overline{U X_n}$ and X does not have UAP, then also $(\Sigma \bigoplus X_n)_b$ does not have UAP.

Denote by π_m the natural projection of X onto L^m. Let $T' =$ $J_m^{-1}\pi_m T J_m: L^m \to L^m$. Clearly rk $T' \leq r k T$ and $||T'|| \leq ||T|| \leq \lambda$. We have also $T'_{L} = Id_{L^n}$ and therefore $\beta_n(T') = 1$. Since, by (3'),

$$
|\beta_m(T')-\beta_n(T')|\leq ||T||\sum_{j>n}\gamma_j\,\max\{||1_{\varphi_j(A)}||\colon A\in\Delta_j\},
$$

there exists an *n* such that for all $m \ge n$

$$
\beta_m(T')\geq \frac{1}{2}.
$$

Let f_i be as in the proof of Lemma 1. Let $k = rk T'$. There exists a number k which depends only on K, λ and γ such that there exists a $\frac{1}{4}$ -net x_1, \dots, x_k in $T'({f \in L: ||f|| < \gamma})$. Consequently, for every j there is an $i = 1, \dots, K$ such that $||Tf_i - x_i|| < \frac{1}{4}$. Therefore

$$
|\beta_m(T')| \leq K \max_{1 \leq i \leq K} 2^{-m} \sum_{j=1}^{2^m} |(f_j, x_i)| + \frac{1}{4}.
$$

But since $q \ge 2$, $||x_i|| \ge ||x_i||_2$ and therefore

$$
\lambda \geq ||x_i|| \geq ||x_i||_2 = \left(\sum_{j=1}^{2^m} |(f_j, x_i)|^2\right)^{\frac{1}{2}} \geq 2^{-m/2} \sum_{j=1}^m |(f_j, x_i)|
$$

and thus $|\beta_m(T')| \leq \frac{3}{8}$ if m is big enough. This contradicts (11).

In this way we have proved a weaker version of Proposition $3 -$ "symmetric" should read "unconditional". To improve this, we use a result of W. J. Davis [1]: Every uniformly convex space with unconditional basis can be embedded as a complemented subspace in a uniformly convex space with symmetric basis.

Proposition 3 follows now immediately, since UAP is hereditary with respect to complemented subspaces.

The author is grateful to G. A. Elliott and T. Figiel for helpful discussions.

REFERENCES

1. W.J. Davis, *Embedding spaces with unconditional bases,* Israel J. Math. 20 (1975), 189-191.

2. J. Lindenstrauss and L. Tzafriri, The *uniform approximation property in Orlicz spaces,* Israel J. Math. 23 (1976), 142-155.

3. A. PeJ'czyfski and H. Rosenthal, *Localization techniques in L~ spaces,* Studia Math. 52 (1975), 263-289.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF COPENHAGEN COPENHAGEN, DENMARK