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A B A N A C H  LATTICE WITHOUT THE 
APPROXIMATION PROPERTY 

BY 

A. SZANKOWSKI 

ABSTRACT 

A Banach lattice L without the approximation property is constructed. The 
construction can be improved so that L is, in addition, uniformly convex. These 
results yield the existence of a uniformly convex Banach space with symmetric 
basis and without the uniform approximation property. 

A Banach  space L is said to have the approximation property (AP) if the 

identi ty ope ra to r  on L can be approx imated  uniformly on every compact  subset 

of L by bounded  finite rank operators ,  i.e. if for  every  compact  K C L and for 

every  e > 0  there  exists T : L - - ~ L  with r k T = d i m T L < o o  and such that 

II T x  - x II < ~ for every  x • K. 

A Banach lattice L is a partially o rde red  real Banach  space for which 

(i) x=<y  i m p l i e s x + z = < y + z  for every  x,y,  z E L ,  

(ii) ax  _-> 0 wheneve r  x -_> 0 and a _-> 0, 

(iii) the least upper  bound  x v y and the greatest  lower bound  x ^ y exist for  

every  x, y ~ L, 

(iv) Ilxll ~ IlYll whenever  Ixl  =< lYl (where Ixl  = x v ( -  x)). 

1. Construction of a Banach lattice without AP 

Let  I = [0, I], let A be the Lebesgue  measure  on L Let  Jn deno te  the set of 

intervals {[k • 2 -~, (k + 1)2-n]: k = 0, 1 , . . . ,  2 n - 1}. By B~ we deno te  the (finite) 

t r -algebra of subsets of I genera ted  by J~. Let  ~p, : I - ,  I be  a measure  preserving 

t ransformat ion  such that 

[ [(k + 1)2-n,(k +2)2  -hI if k is even,  

~ , ( [k2-n,  (k + 1)2-~]) = 

[(k - 1)2 -~, k2  -~] if k is odd. 
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At the very end of this chapter we shall construct a sequence A, of (disjoint) 

partitions of I satisfying the following conditions: 

(*) the elements of A, are B.-measurable subsets of I of equal length, M, = the 

number of elements of h.,  goes faster to oo than any power of n. 

(**) If A E A., B E h,. then 

A(q~, ( A ) ~  B)_<-4A (A) • A(B). 

Let f be a measurable function on L We put 

II/ll = sup  max.~. M., f,, Ifld* 

and define L = {/: fill < ~}, equipped with the norm l[ II (we identify functions 

equal a.e.) 

By standard arguments one can prove that L is a Banach space, it is clearly a 

lattice with the natural order relation; (i)--(iv) are trivially fulfilled. We have also 

(1) llfll~ <= Ilfll <- IlYIl~ for all f. 

Let T ~ B(L, L) (= bounded operators from L into L). We define (here la  is 

the indicator function of A and (f ,g)= ffgdA): 

f t . (T)  = E (1., T1.). 
u E./n 

We have the following two standard lemmas. 

LEMMA 1. If T E  B(L ,L )  is compact, then l im,~=/3.(T)= 0. 

PROOF. First let us notice that, by the invariance of trace, if wj, j = 1,. • •, 2" 

is any system of B.-measurable functions satisfying (wl, wj)= 2-"&j, then also 

2 n 

f t .(T) = ~2~ (w,, Tw,). 
j = l  

In particular, if f l , . . .  ,f2- are B,-measurable functions such that [fj[---1 and 

~ ,  f~) = &i, then 
2n 

[3.(T) = T "  ~'~ @, Tf~) 
i = 1  

(take, for example, the first 2" Walsh functions). 

Notice that, by (1), ]]fi 11 = 1 and IlL I1" = 1 where I1~ I1" = sup{~, f ) :  Ilfll = 1}. 
Take an e > 0. Since T is compact, we can find xl, • • •, xk ~ L so that for every 

1~ there exists an i so that II Tfj - x, II < e/2. Therefore 
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2 n 

(2) I/3.(T)[ _-< k max 2-" ~] I~,x,) l  + el2. 
l ~ i ~ k  ] = 1  

Since /j are orthonormal and x, E L,, l im;~( f / ,x~)=0  for i =  1 , . . . , k  and 

therefore, if n is big enough, 

2 n 

2 - " Y , l ~ , x , ) l < e / 2 k  for i = l , . . . , k .  
. / = 1  

Consequently, I/3,(T)I < e for sufficiently big n. This proves Lemma 1. 

LEMMA 2. Assume that for every n there exists a finite set 17, so that (here 

/3_, = O) 

(3) I /3.(T)-/3,_,(T)I  <-<-max{llTfll:f~F.}, n = 0 , 1 , 2 , . . .  

(4) ~ a . < o o  where a , = m a x { l l f l l : f E F , } .  

Then L does not have AP. 

PROOF. First let us notice that, by (4),/3(T) = l i m , ~ / 3 , ( T )  is well defined for 

all T E B (L, L). 
We see immediately that /3 is linear and that /3(IdL)= 1, where IdL is the 

identity on L. 
Let ~,--+~ be such that we still have Y.a,s¢, <oo. Let us take K = 

U~=0(~not . ) - lF.  O {0}. This is clearly a compact set in L, since O (~.a.)- 'F,  is 

just a sequence convergent to 0. 

We have, by (4), 

Ifl(T)l = (.~=o a.,.)sup(llTfll: f ~ K}. 

Assume now that T E B(L ,  L )  is compact and that II Tx - x II < e for all x E K. 

By Lemma 1 and by linearity of /3 we have 

1= I /3(1-  T)I _-< ( .=o ~ c t . , . ) . e  

and this shows that L does not even have the compact AP (i.e. the weaker 

approximation property, where the words "finite rank" in the definition of AP 

are replaced by "compact").  

In the sequel we shall need the following 

a m . . , _ LEMMA 3. Let A = ( ~i)i,,=~. There exist e,, • e= = + 1 such that 

i = 1  .1=1 i = 1  
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(Let us not ice that  the iemma expresses the following s ta tement :  let an ope ra to r  

A :  l~---~ l? be given by a ( x )  = Ax. Then  [IA II -- max {[IAx It,: x ~ ext (unit ball 

of/7)}_-> J t rA 1.) 

PROOF. We shall prove  a little more  than stated: there  exist el, • • •, e,~ = - 1 

so that  Z~ e~ E~ ei a~j _--> Ea, .  If we put  b~j = a~j + aj, this becomes  

~, e~ejb~j >-_ O. 
l ~ j < i ~ _ r a  

The  last s ta tement  follows easily by induction on m: 

e,e,b,, = ~, e,ejb,, + e.÷~ 2 e,b.,. 
l < - - j < i ~ m + l  I ~ j < i ~ i m  ,/=1 

Having chosen e~ so that the first term is _-> 0, we take e,.÷l = sgn E , ~  ejb,,j. 

LEMMA 4. For every T E B(L,  L)  there exist (e.) .~j . ,  e.  = - 1 so that 

(5) ] /3 . (T) - /3 ._~(T) ]  = < ,~a .  f~ I T  ~,.~,*~ eol..(o)[ 

PROOF. Obviously,  

/3.(T)-/3._,(T) = ~ (1., TI,~(.)) 
u E J ~  

= E E (1.,T1,~(,)). 
A(EA n u E I ~ u  C A  

For  a fixed A E A. we apply L e m m a  3 wit-h 

rn card A n -i a , ,  = = 2 M~ , = (1~, Tl~go)) 

and we find e., u CA,  u ~ J .  so that  

Z Z 
u C A . u E J  n u C A , u E J  n 

The  lef t -hand side is equal  to 

u C A , u E J  a v C A , u E J  n u C A , u E J n  v C A , o 6 J  a 

This gives the desired inequali ty.  
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Now we can easily show that the assumptions of Lemma 2 are fulfilled with 

(6) Fn = 1,3 {f: f is Bn-measurable and Ifl : I~A)}. 
A E~n  

Indeed, by Lemma 4, 

(7) ]fln(T)-[3n_~(T)] <=Mn max max f [Tf] 
I E F n  A EAn 3A 

and this gives (3). 

On the other hand, if Ifl = I~A~ for an A ~ An, then for any m, any B E Am, 

we have, by (**), 

f lf[ = A ( ~ n ( A ) N B ) < = 4 A ( A ) A ( B )  

and therefore 

fill ~ 4A(A) = 4M:  1. 

Clearly, E M :  ~ < ~. 

It remains to define partitions An satisfying (*) and (**). We shall need the 

following combinatorial 

LEMMA 5. Let card P = 2 TM, let q = 2 M. There exist partitions [~, . • . ,  l-lq of P 

so that 

(*') all [~ consist of q sets of q elements each, 

(**') if D ~ fit, E E [~j, i #  j, then D N E consists of one element. 

PROOF. We can treat P as an abelian field; let S be a subfield of P of order q 

(i.e. having q elements). Let A denote the set of all straight lines passing through 

0, of the form xS. Evidently, A has (q2 _ 1)/(q - 1) _-> q elements. For each l E A 

let fll denote the partition of P into S-lines parallel to I. Clearly, (*') and (**') are 

satisfied. 

CONSTRUCTION OF An'S. NOW it will be more convenient to identify I with the 

infinite product V = { -  1, 1} "o, equipped with the natural product measure. By 

this identification, B, = the subsets of V that depend on the first n coordinates 

only and we can put ~pn(e~,e2, '") = (e~, e 2 , ' " ,  - e , , ' . . ) .  

Let P. = { - 1 ,  1} 2", we represent V as V = I-I~=~P.. By 7rn we denote the 
,, k 2,,+1 2qn*l +1 

~ }rn=2(qn+l)  natural projection from V onto Pn. Let qn Xk=~2 ( - 1); let {~qm 

denote a system of partitions of P . - ,  satisfying (*') and (**') of Lemma 5 (this is 

possible, since here M = 2 n-~, q = 2 2--2 and we need 2 "+2 partitions), from some n 

o n .  



334 A. SZANKOWSKI Israel J. Math. 

For q. < m -< q.+, we set 

A,. = {{t E V: 7r._l(t) E D and t., = 1} : D E fl,.+,_2-} 

U { { t E V : T r . - , ( t ) E D  and t , . = - l } : D E l l . , + , } .  

Remark that M,, = 2 -2"-2 whence m = 0 ( 2 " )  and therefore (*) is satisfied. 

Let us now check (**). So let q, < m  <q~+,, q, <n<=qj+l, let A = 

{ tE~7:Th+l( t )ED and t . = e } ,  B = { t E V : , r ~ _ I ( t ) E E  and t"`=r /}  with 

D E ll.+1-.+1)2,-', E E ll.,+~-~+1)2 .... Remark that q~.(A ) C zr;_~l (D), B C ~r 7-~1 (E)  

and 

A(A) = -~a (7rj--~12 (D))  = 2 -2'-2 

A(B) = ½A (rr2,  ( E ) ) =  2 -2'-=. 

Let  us consider two cases: 

1. i #  j. Then rr}-_ ~, (D)  and rrT-', (E)  depend on disjoint sets of coordinates 

and therefore 

A (~. (A)  n B)  _-< X (Tr ~-_', (D)  (3 rr 21 (E))  = A (rrj21 (D) ) . ) t  (rr 7-'1 (E))  

= 4A(A) .  A(B). 

2. i = j. If m = n and e = 77, then q&(A) and B differ on the nth ( = mth)  

coordinate and are disjoint. 

Otherwise D and E belong to different partitions of P,_t and therefore D 71 E 

consists of one point. Consequently, 

A (~0. (A)  f-I B ) < A (Tr;_', (D fq E))  = 2 -2'-' = (2-2'-2) 2 = 43. (A)A (B). 

2. Applications 

By a modification of the construction in the first part of this paper, we can get 

the following embedding theorem. 

PROPOSITION 1. Let 1 <= q < p <= oo. There exists a Banach lattice L which can 

be isometrically imbedded in (£@L~)tp and which Jails the approximation 

property. 

As an immediate corollary (by taking 1 < q < p < o0) we get 

PROPOSITION 2. There exists a uni]:ormly convex Banach lattice without AP. 

Probably the most interesting applications of our  result are connected with the 

recently introduced notion of uniform approximation property (UAP).  
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DEFINITION ([3]). A Banach space X is said to have ) t -UAP if there exists a 

function N(k)  such that for every k-dimensional subspace E of X there exists 

an operator T ~ B(X, X)  such that TIE = Idu, [1T[[ _-< )t and rk T <= N(k) .  X has 
UAP if there exists A < o0 such that X has )t-UAP. 

PeJ'czyfiski and Rosenthal proved in [3] that Lp-spaces have UAP;  this was 

extended to the case of reflexive Orlicz spaces by Lindenstrauss and Tzafriri [2]. 

One could therefore ask what "decent"  Banach spaces have UAP.  We obtain 

here a rather strong negative result. 

PROPOSITION 3. There exists a uniformly convex Banach space with symmetric 
basis, which does not have UAP. 

PROOF OF PROPOSITION 1. By an inspection of the first part of this paper we 

can immediately see that we obtain a lattice without AP whenever our norm 11 11 

satisfies the following conditions (for some constants y, 3',): 

(V) Ilfll-- Ill/Ill, Ilfll, --< Ilfll =< 3'llfll~ for all f, 

(4') ~. 3'. max 3' II I~.,A>II < o% 
AEAn 

(5') M. max ( I g i --< 3'-II g II for all g, all n. 
AEAn J 

Indeed, by setting F'. = 3'.F. (the F. from (6)) we get, by (7) and (5'), 

(3') t f l . (Z)-13._ , (T) t<=3".max{UZfl l : fEF.}=maxI l ITf l l : fEF'} .  

On the other hand, (4') says exactly 

max{llfll: f~  F'}< ~. 

We apply Lemma 2 (Lemma 1 is again valid, by (1')). 

We set now tentatively 

and 3'. = M .  °. 
adO'  ). We have, for A E A., by (**), 

IIl~.,a,l{ <= ( ,,,=,~ M,,, . MZ4P/qM:P/qM:P'") ''p 

= 4L/qM~l/q M~+~p-p/q 
m = l  
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and (4') is satisfied provided 

M~ ÷~-p 'q<~ and ~ M ,  ~-~/q< oo. 

Since M, goes very fast to % it is enough if 

(8) 1 + ap - ~q < O, 

(9) [3 _ 1 < 0, 
q 

ad (5'): [[g[[-> MT(f~[g[q) TM for every n and every A EA. .  

By H61ders inequality we get (for every n and every A E A )  

Again, (5') is satisfied provided 

Igl  = M :  +°- '" f .  I g t .  

1 > 
( lO) a + [3 - - = o. q 

It is easy to see that the system (8), (9), (10) is consistent if q < p (it is satisfied, 

e.g., with a = ½(llq - l /p),  [3 = ½(1/q + I/p)). 

It remains to prove the inequality in (1'). The left hand side inequality is 

satisfied provided M~ = 1, which we can always assume. The right hand side 

inequality is satisfied with y = X M~ +~p-"/q < oo. 

This completes the proof of Proposition 1 (and of Proposition 2). 

Let L be the Banach lattice from Proposition 1. Let L " =  { f E  L:  f is 

B,-measurable}. We set X = (X@ L ' ) G  by J, we denote the natural embedding 

of L"  into X. Clearly X has an unconditional basis, namely J.(llk2-',(k+02-"l), 
n = 0 , 1 , - . - ;  k = 0 , 1 , - - . , 2 " -  1. 

LEMMA 6)  X does not have UAP provided q >= 2. X is uniformly convex 

provided 1 < q < p < oo. 

PROOF. The second statement is obvious. To prove the first one we shall 

modify the proof of Lemma 1. Let m _-> n, let A < ~ and let T ~  B ( X , X )  with 

Tjj , , .  = IdjmL, and [[fll --< h. We want to prove that if n is big enough and m 

grows to o% then rk T must go to ~ too. 

* As was pointed out to the author by N. J. Nielsen and by L. Tzafriri, Lemma 6 follows trivially 
from the following general compactness argument: 

If X = UX. and X does not have UAP, then also (X@X,)~ does not have UAP. 
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Denote  by or,, the natural projection of X onto L m. Let T ' =  

J~w, ,TJr ,  : L "  ~ L m. Clearly rk T'  < rk T and II T'II =< II TII --< x. We have also 
TIL. = IdL. and therefore / 3 , ( T ' ) =  1. Since, by (3'), 

[ /3m(T')- /3.(T')[-< [[TI[ ~ 3'J max{llL~A,II: A EA,}, 
i>n 

there exists an n such that for all m => n 

(11) /3. (T') _-> ½. 

Let ~ be as in the proof of Lemma 1. Let k = rk T'. There exists a number k 

which depends only on K, A and 3' such that there exists a ¼-net x l , " ' ,  xK in 

T ' ( { / ~  L:  Ilfll < 3'}). Consequently, for every j there is an i =  1 , . - . ,  K such 

that II Tj~ - x, II < ¼. Therefore 

2 m 

[/3,(T')[ _ - g  max 2 -m ~ Iff,, x,)l +I. 
l~i~K ]=1 

But since q => 2, IIx, II --> II x, 112 and therefore 

= > =>2-ma I (~,x,)] x IIx, I1= IIx, 112-- I ,x,)l 2 

and thus I/3m(T')[-----~ if m is big enough. This contradicts (11). 

In this way we have proved a weaker version of Proposition 3 - -  "symmetric" 

should read "unconditional".  To improve this, we use a result of W. J. Davis [1]: 

Every uniformly convex space with unconditional basis can be embedded as a 

complemented subspace in a uniformly convex space with symmetric basis. 

Proposition 3 follows now immediately, since U A P  is hereditary with respect 

to complemented subspaces. 

The author is grateful to G. A. Elliott and T. Figiel for helpful discussions. 
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